Belgian Mortality Monitoring Be-MOMO
This graph presents the observed all-cause mortality in Belgium outputted from the Be-MOMO model over the last five years. The daily observed numbers are the average of the day, the 3 preceding and the 3 subsequent days. Due to delays in death registration, the counts for the most recent weeks are preliminary and numbers are visualized with a 3 week time lag. Separate curves for Flanders, Wallonia and Brussels are available using the top right-hand corner of this graph. You are free to use the results produced by this application on the sole condition that the source is mentioned (cf. Footnote).
Environmental Risk Factors
This graph shows the observed all-cause mortality in Belgium and the curves of the environmental risks such as meteorological data (temperature) and air pollution data (ozone, PM10 and PM2.5). It allows to visualize the correlations between mortality and extreme temperatures (above 25°C or below 0°C) and high air-pollutant concentrations (ozone above 100µg/m³ (max 8-hour mean), PM10 above 45µg/m³ and PM2.5 above 15µg/m³; corresponding to WHO thresholds of 2021). The vertical light-orange bands highlight the days with statistically significant excess mortality. All values are smoothed with a 7-day centered moving average. Meteorological data are provided by the Royal Meteorological Institute of Belgium (RMI). Ozone, PM10 and PM2.5 data are provided by The Belgian Interregional Environment Agency (IRCEL-CELINE).
Abbreviations:
- Exp. Mort.
- Expected Mortality
- Obs. Mort.
- Observed Mortality
- Tmin
- Minimum temperature
- Tmax
- Maximum temperature
- PM10
- Particulate Matter < 10 µm
- PM2.5
- Particulate Matter < 2.5 µm
How to play with this graph
- – Hover lines with your mouse to view numbers
- – Click & drag with your mouse to zoom on a period
- – Right-click to reset default zoom
- – Hover legend items to highlight the lines
- – Click legend items to hide/show the lines
COVID-19
This graph depicts the observed all-cause mortality in Belgium, with the reported COVID-19 related deaths (Source) subtracted and colored in orange. The resulting blue area represents the remaining deaths from all other causes. When the total number of daily deaths exceeds the upper or lower limits of the prediction interval predicted by the modelling (green dashed lines), there is a significant excess or under-mortality.
During the first wave of COVID-19 (from 1 March to 21 June 2020), an unusual peak in deaths was observed, almost entirely attributed to COVID-19 related deaths. This first peak of COVID-19 deaths occurred around 8 April 2020. A second unusual peak in August 2020 was attributed to a heat wave. From 31 August 2020 to 14 February 2021 (second wave of COVID-19), a third unusual peak in deaths was observed (6 November 2020), again primarily attributed to COVID-19 related deaths. During these first two COVID-19 waves, the percentage of excess mortality was relatively high, but then dropped drastically for the subsequent waves.
The year 2021 was marked by three epidemic waves of COVID-19 and a brief heat episode. In 2022, there were five COVID-19 epidemic waves, a very hot summer, and two influenza epidemics. The last peak in deaths observed in December 2022 coincides with an increase in respiratory infections (influenza, RSV, COVID-19), cold temperatures, and higher concentrations of fine particles.
As of 30 June 2023, data collection for COVID-19 deaths via epidemiological surveillance has stopped, so this figure will no longer be updated. More information about the COVID-19 surveillance and related reports can be found here.
Be-MOMO Project
In Belgium, surveillance of all-cause mortality is carried out on a weekly basis by the service of Infectious Diseases Epidemiology of Sciensano. The mortality monitoring model is designed to serve as a tool for rapid detection and quantification of unusual mortality which might result from disease epidemics, such as influenza or extreme environmental conditions, such as heat waves. A timely assessment of the impact on mortality may be useful to guide or reinforce new or existing public health measures, such as influenza vaccinations and the heat action plan. Moreover, mortality monitoring can be used to evaluate possible effects of public health measures by comparing periods before and after the implementation of the intervention.
Analyses
Data
Data are updated on a weekly basis, except population sizes for which the official numbers at the 1st of January are used. Mortality data are provided by the National Register and the population data by Statistics Belgium. The mortality file contains information on all deaths registered by Belgian municipalities during the previous week (up until Saturday midday). The data comprises the date of birth, date of death, gender, nationality, place of residence and place of death. The causes of death are unknown. Because of a considerable variation in the rapidness of death registration (ranging from a few days to many weeks after the actual date of death), figures for recent periods are incomplete. Around 97% of mortality data are available after two weeks. Deaths taking place abroad are removed from the analyses as they are assumed to be unrelated to concurrent meteorological or environmental conditions in Belgium.
Statistical Methods
Observed deaths are aggregated by day. To be able to detect and quantify important increases in mortality, observed death counts are compared to 2 types of reference lines, obtained by modelling past 5-year mortality data:
- Expected deaths are the model predictions and represent normal/average mortality. They are used for the calculation of the excess number of deaths (observed – expected).
- The threshold is the upper limit of the prediction interval around expected mortality, calculated by a 2/3-power transformation to correct for skewness in the Poisson distribution (Farrington et al, 1996). Threshold values represent critical mortality levels and are used to detect unusual or significant mortality. The confidence level for the upper threshold was chosen as the optimal compromise between sensitivity and specificity of alert detection. It was set at 99.5% for daily-level data.
The statistical model is a modification of the overdispersed poisson Farrington model, originally developed for the detection of infectious diseases outbreaks based on weekly disease counts (Farrington et al, 1996). The model was adapted in order to be applicable to both daily- and weekly-level mortality data. While the original method limits the amount of reference data by using only historical data from similar weeks, a sine and cosine wave component was added to capture the seasonal pattern of mortality. This enables modelling the complete 5-year time series and reduces random variation in the predicted baseline, especially for daily-level data. The Be-MOMO model was adapted on 14 June 2021 following the 2020 excess mortality associated with the COVID-19 epidemic (EN - FR - NL).
An automated analysis procedure is implemented since 2018 in R, software for statistical computing (previously with Stata version 13). Statistical methods and performance of the Be-MOMO system are described in more detail in Cox et al (2010) and in the last Be-MOMO report.
Cox B, Wuillaume F, Van Oyen H, Maes S. Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events. International Journal of Public Health 2010, 55(4):251-259.
Links
Belgium
- Sciensano.be
- Infectious Diseases Epidemiology unit
- Sciensano - Be-MOMO
- Sciensano - Acute Respiratory Infections Bulletin
- Sciensano – Influenza-like illness sentinel surveillance in Belgian nursing homes
- Sciensano - Mortality
- Sciensano - Epidemiological surveillance of COVID-19 mortality
Europe
Publications
-
NL – Winter 2022-2023 en 2023-2024
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de winters van 2022-2023 en 2023-2024 -
FR – Hiver 2022-2023 et 2023-2024
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant les hivers 2022-2023 et 2023-2024 -
NL – Winter 2020-2021 en 2021-2022
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de winters van 2020-2021 en 2021-2022 -
FR – Hiver 2020-2021 et 2021-2022
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant les hivers 2020-2021 et 2021-2022 -
NL – Winter 2020-2021 en 2021-2022
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de winters van 2020-2021 en 2021-2022 -
FR – Été 2023
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l'été 2023 -
NL – Zomer 2023
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de zomer van 2023. -
FR – Été 2022
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l'été 2022 -
NL – Zomer 2022
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de zomer van 2022. -
FR – Été 2021
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l'été 2021 -
NL – Zomer 2021
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de zomer van 2021. -
FR – Été 2020
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l'été 2020 -
NL – Zomer 2020
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de zomer van 2020. - NL – Oversterfte tijdens de eerste en tweede golf van de COVID-19-epidemie in België
- FR – Surmortalité durant la 1re et 2e vague de l'épidémie de COVID-19 en Belgique
- EN – Excess mortality during the first and second waves of the COVID-19 epidemic in Belgium
-
FR – Hiver 2019-2020
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l’hiver 2019-2020 -
NL – Winter 2019-2020
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel in de winter van 2019-2020 -
FR – Eté 2019
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l’été 2019 -
NL – Zomer 2019
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel in de zomer van 2019 -
FR – Hiver 2018-2019
Surveillance de la mortalité toutes causes confondues en Belgique, Flandre, Wallonie et Bruxelles durant l'hiver 2018-2019 -
NL – Winter 2018-2019
Surveillance van sterfte door alle oorzaken in België, Vlaanderen, Wallonië en Brussel in de winter van 2018-2019 -
FR – Été 2018
Surveillance de la mortalité toutes causes en Belgique, Flandre, Wallonie et Bruxelles durant l'été 2018 -
NL – Zomer 2018
Surveillance van de mortaliteit door alle oorzaken in België, Vlaanderen, Wallonië en Brussel tijdens de zomer van 2018 -
FR – Hiver 2017—2018
Surveillance de la mortalité en Belgique, Flandre, Wallonie et Bruxelles durant l'hiver 2017—2018 -
NL – Winter 2017—2018
Surveillance van de mortaliteit in België, Vlaanderen, Wallonië en Brussel in de winter van 2017—2018 -
FR – Été 2017 – Belgique
Surveillance de la mortalité toutes causes en Belgique durant l'été 2017 -
NL – Zomer 2017 - België
Surveillance van de mortaliteit door alle oorzaken in België tijdens de zomer van 2017 -
NL – Zomer 2017 – Vlaanderen
Surveillance van de mortaliteit door alle oorzaken in Vlaanderen tijdens de zomer van 2017 - Weekly influenza bulletin
- Influenza end of season reports
-
Excess mortality in Europe coincides with peaks of COVID-19, influenza and respiratory syncytial virus (RSV), November 2023 to February 2024
Nørgaard S., Nielsen J., Nordholm A., Richter L., Chalupka A., Bustos Sierra N., Braeye T., et al.
Euro Surveill. 2024;29(15):pii=2400178
https://doi.org/10.2807/1560-7917.ES.2024.29.15.2400178 -
Real-time monitoring shows substantial excess all-cause mortality during second wave of COVID-19 in Europe, October to December 2020
Sarah K. Nørgaard, Lasse S. Vestergaard, Jens Nielsen, Lukas Richter, Daniela Schmid, Natalia Bustos, Toon Braeye., et al.
Euro Surveill. 2021;26(2):pii=2002023.
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.1.2002023 -
All-cause mortality supports the COVID-19 mortality in Belgium and comparison with major fatal events of the last century
Natalia Bustos Sierra, Nathalie Bossuyt, Toon Braeye, Mathias Leroy, Isabelle Moyersoen, Ilse Peeters, Aline Scohy, Johan Van der Heyden, Herman Van Oyen & Françoise Renard
Archives of Public Health volume 78, Article number: 117 (2020).
https://archpublichealth.biomedcentral.com/articles/10.1186/s13690-020-00496-x -
Excess all-cause mortality during the COVID-19 pandemic in Europe – preliminary pooled estimates from the EuroMOMO network, March to April 2020
Lasse S Vestergaard, Jens Nielsen, Lukas Richter, Daniela Schmid, Natalia Bustos, Toon Braeye et al.
Eurosurveillance Vol 25, N°26 (June 2020).
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.26.2001214 -
European all-cause excess and influenza-attributable mortality in the 2017/18 season : should the burden of influenza B be reconsidered?
Nielsen J, Vestergaard L, Richter L, Schmid D, Bustos Sierra N, Asikainen T et al.
Clinical Microbiology and Infection. 10.1016/j.cmi.2019.02.011. (February 2019)
https://www.sciencedirect.com/science/article/pii/S1198743X19300588 -
Excess all-cause and influenza-attributable mortality in Europe, December 2016 to February 2017.
Vestergaard L, Nielsen J, Krause T, Espenhain L, Tersago K, Bustos Sierra N et al.
Euro Surveillance Vol. 22, N°14 (April 2017).
http://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.14.30506 -
Excess mortality among the elderly in European countries, December 2014 to February 2015.
Mølbak K, Espenhain L, Nielsen J, Tersago K, Bossuyt N et al.
Euro Surveillance Vol. 20, N°11 (March 2015).
http://www.eurosurveillance.org/content/10.2807/1560-7917.ES2015.20.11.21065 -
Excess mortality among the elderly in 12 European countries, February and March 2012.
Mazick A, Gergonne B, Nielsen J, Wuillaume F et al.
Euro Surveillance Vol. 17, N° 14 (April 2012).
http://www.eurosurveillance.org/content/10.2807/ese.17.14.20138-en -
Higher all-cause mortality in children during autumn 2009 compared with the three previous years : pooled results from eight European countries.
Mazick A, Gergonne B, Wuillaume F, et al.
Euro Surveillance Vol.15, N°5 (February 2010).
http://www.eurosurveillance.org/content/10.2807/ese.15.05.19480-en -
Monitoring of all-cause mortality in Belgium (Be-MOMO): A new and automated system for the early detection and quantification of the mortality impact of public health events.
Bianca Cox, Francoise Wuillaume, Herman Van Oyen, Sophie Maes.
International journal of public health. 55. 251-9. 10.1007/s00038-010-0135-6 (April 2010).
https://www.researchgate.net/ -
Death toll exceeded 70,000 in Europe during the summer of 2003.
Robine JM, Cheung SL, Le Roy S, Van Oyen H et al.
Comptes Rendus Biologies, Vol. 331, N°2 (2008), 171-178.
https://www.sciencedirect.com/science/article/pii/S1631069107003770?via%3Dihub